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Steady solutions characterized by downstream boundary layers are sought to the one- 
dimensional linearized Burgers equation for a variety of computational-that is, spatial 
and temporal Merencing-schemes. When well resolved, the presence of these boundary 
layers does not seriously a&ct the accuracy of the interior solutions. For narrow outflow 
boundary layers, however, the Chebyshev collocation method may be unstable, unlike the 
finitediEerence technique, for grid Reynolds numbers less than a certain critical value. Al- 
though the spectral solutions are improved by using fractional step timedifferencing 
methods in which the viscous and advcctive effects are separately treated, the stability 
of the resulting multistep technique need not be guaranteed by the stability of its com- 
ponent steps. Analogous computational restrictions on the use of the Chebyshev colloca- 
tion method are shown to hold for the nonlinear Burgers equation. 

1. I~R~DuCTI~N 

Increasing attention in the fields of computational and geophysical fluid dynamics 
has been paid to the problem of integrating the hydrodynamic equations over a 
limited (open) domain [ 11. Of persistent concern has been the selection and implemen- 
tation of appropriate boundary conditions for regions of outflow [2, 31. Fortunately, 
Fix and Gunzberger [4] have shown for viscous transport problems that incorrect 
specification of the outflow boundary condition will adversely affect the solution’only 
in a narrow region adjacent to ‘outflow. This is necessarily true, however, only if 
sufficient resolution is maintained in the outflow boundary layer. Since it may often be 
computationally inefficient to fully resolve the outflow region (if, for example, the 
important dynamical scales are much larger than the boundary layer thickness), it is 
of interest to inquire as to the effects of insufficient boundary layer resolution. 

In this paper, we explore the extent to which accurate, stable, and convergent 
results can be obtained to a linearized one-dimensional model problem for which a 
narrow viscous boundary layer exists on the downstream boundary. The prototype 
problem is solved using both finite-difference and spectral (Chebyshev) approximations 
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in space, and one of several stepping schemes in time. The intent is not to provide a 
definitive comparison between the finite-difference and spectral methods when applied 
to equations of this type, but to investigate the quite different computational restric- 
tions associated with each technique. 

The resulting spatial approximations are convergent. As anticipated, however, an 
accurate and/or stable interior solution can be maintained only if the narrow viscous 
boundary layer is sufficiently well resolved, that is, if the grid Reynolds number 
(to be defined) is sufficiently small. Of particular interest is the fact that the Chebyshev 
approximation is susceptible, unlike the finite-difference schemes studies, to a temporal 
instability which is eliminated by taking a larger, rather than a smaller, time step. For 
fixed spatial resolution, the results imply a trade-off between stability and accuracy. 
As we will see, similar remarks hold for the spectral approximation to fully nonlinear 
problems. 

2. A LINEARIZED TRANSPORT EQUATION 

Consider the following advective-diffusive (“linearized Burgers”) equation 

For the purposes of this discussion, we restrict our attention to two problems corre- 
sponding to the boundary conditions, 

and 

u(0, t) = 1, u(l, t) = 0, Problem 1 (Pl) (W 

u(0, t) = 1, $U(l, t) = 0, Problem 2 (P2). (2b) 

Problem 1, defined by Eqs. (1) and (2a), has a steady-state solution characterized by a 
viscous boundary layer of thickness v near x = 1; that is, 

1 - exp[(x - 1)/v] 
u(xy t, t+w’ 1 _ +-l/v) ’ 

The second problem has no such steady boundary layer; for (1) and (2b), 

In the succeeding sections, Eq. (1) will be numerically integrated in time with the 
initial conditions ~(0, 0) = 1 and u(x > 0, 0) = 0 in search of the steady-state solu- 
tions (3a) and (3b). It will be shown that accurate interior solutions can be obtained 
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only if sufficient spatial accuracy is maintained in the outflow boundary layer region 
and that this conclusion is not changed for problems, such as P2, which have no 
explicit steady-state boundary layer character. 

3. APPROXIMATION BY THE CHEBYSHEV COLLOCATION METHOD 

We will solve Pl and P2 by the Chebyshev collocation method (also called pseudo- 
spectral approximation). The details of the technique have been given elsewhere 
[5-71. We note only the form of the discrete spectral representation, 

u(x, n At) = u”(x) = f ~Pn~Dm 4 =2x- 1. (4) 
p=o 

T,(4) = r,(cos 8) = cos(@) is the Chebyshev polynomial of degree p. For the 
present application, the spectral cutoff, iV, is 64. As expansion functions, series of 
Chebyshev polynomials are extremely convenient for two reasons. First, Chebyshev 
transforms can be interpreted as cosine transforms on the nonuniformly spaced 
collocation grid R, = cos(vq/N), 0 < q < N. Together with certain well-known 
Chebyshev recursion relations, this means that the fields U, and u2* can be evaluated 
very efficiently, in O(N log N) operations. Second, the resolution of the collocation 
grid is enhanced near x = 0 and 1, where the narrow viscous layers are expected in 
these examples. When using explicit time differencing, however, the Courant condition 
for the maximal allowable time step can be very restrictive given the much t5ner grid 
spacing at the edges of the computational domain. 

The correct implementation of boundary conditions (2a) or (2b) requires that the 
diffusive term v(&/8x2) = VU,, (at least) be treated implicitly. To avoid the necessity 
of taking very small time steps, it is also advantageous to adopt an implicit representa- 
tion of 24,. We consider, therefore, the following semi-implicit time-differencing 
schemes: 

(i) Crank-Nicolson (CN) 

u”+L; Un = &[vu,, - l&p+1 + j$u,, - ZQ, 

(ii) Fully implicit(F1) 

p+l- p 

A? = vu,, [ - U,p+l, 

(5) 

(6) 

(iii) Crank-Nicolson, half-step (CNHS) 

u* - un 
At = H-J* + H-d”, u*(o) = 1, 

581/33/3-z 
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p+1 - u* zP+l(O) = 1, 

At = &h,I”+1 + B[%,l*, u”+‘(l) = 0 (Pl), (7b) 
u,“+yl) = 0 (P2), 

and 

(iv) Fully implicit, half-step (FIHS) 

u* - u” 
At = [-u,l*, u*(o) = 1, 

zP+l(O) = 1, 
u”+yl) = 0 (Pl), 
u;+‘(l) = 0 (P2), 

(8’4 

where superscripts n, 12 + 1, etc., denote the time level. In the CNHS and FIHS 
fractional step methods, the outflow boundary condition is imposed only on the 
second half-step in which the diffusive effects are invoked. The significance of this 
fact will become clear shortly. These time-differencing schemes-being fully or semi- 
implicit-are not subject to the Courant restriction on the magnitude of At. Schemes FI 
and FIHS are, however, only first order in time. 

With fixed spatial resolution, N = 64, steady solutions (3a) and (3b) have been 
sought for v = 30.0 x 10-3, 0.6 x 10-3, and 0.1 x 10-3, corresponding to succeed- 
ingly less well-resolved boundary layers of thickness O(v).l Tables I and II summarize 
the results for problems 1 and 2, respectively. The accuracy of the spectral solution 
is expressed in terms of relative errors between the computed steady field and the 
analytic result on the collocation grid; both maximum pointwise and rms errors are 
tabulated. For comparison, problems 1 and 2 have been solved using second-order 
centered finite differences (Ax = 0.01) and the steady-state errors also listed in these 
tables. 

For well-resolved outflow layers (Pl, v = 30.0 x 10-3), both spatial approximations 
are quite accurate, particularly in combination with the single-step schemes (5) and (6), 
both of which tend to give identical steady-state solutions. In addition, errors generally 
decrease with decreasing time step. For marginally resolved layers (v = 0.6 x 10-3), 
rather large rms errors (several tens of percent) are associated with the CN and FN 
methods. Not only do the fractional step schemes do somewhat better, but the error 
norms now typically increase for decreasing time step. The maximum pointwise error 
generally occurs near x = 1. Nevertheless, errors are substantial in the interior, as the 
rms figures indicate. Finally, for sufficiently small v, the spectral integrations fail. Note, 
however, that the half-step schemes have a wider range of stability. For v = 1 .O x 10-4, 
FIHS differencing gives quite good rms results, considering the thinness of the bound- 
ary layer, although it does so only for the larger of the two time steps studied. The 
reason for this At stability dependence will be demonstrated shortly. For comparably 
small v, the finite-difference calculations are stable but inaccurate. 

1 The central value, Y = 0.6 x 1O-S, has been chosen so that the e-folding length of the solution 
is equal to the shortest grid spacing on the Chebyshev collocation grid. 
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TABLE I0 

(a) Spectral model 

Time 
stepping 

(At = 2.0 x lo-*) (At = 2.0 x 10-y 
Maximum pointwise rrns Maximum pointwise rms 

Y error error error error 

CN 
I 

CNHS 
FIHS 

CN 
FI 
CNHS 
FIHS 

CN 
FI 
CNHS 
FIHS 

30.0 x IO-8 < 10-B < 10-e < 10-e < 10-e 
< 10-e < 10-s < 10-e < 10-e 
< 10-e < 10-s < 10-e < 10-s 

6.5 x 1O-3 1.9 x 10-a 7.1 x 10-p 2.1 x 10-a 

0.6 x 1O-s 4.5 x 10-l 2.7 x IO-’ 4.5 x IO-’ 2.7 x 10-i 
4.5 x 10-J 2.7 x 10-l 4.5 x 10-l 2.7 x 10-l 
3.9 x 10-l 2.3 x 10-i 1.4 x 10-i 8.4 x 1o-s 
1.6 x 10-l 9.6 x 10-e 4.9 x 10-l 6.6 x 10-8 

0.1 x 10-S unbounded unbounded 
unbounded unbounded 
unbounded unbounded 
unbounded 3.1 x 10-l 1.1 x 10-l 

(b) Finite-difference model 
J 

Time 
Stepping 

(At = 2.0 x 10-3 (At = 2.0 x lo-*) 
Maximum pointwise rms Maximum pointwise rms 

Y error error error error 

CN 30.0 x 10-s 
FI 
CNHS 
FIHS 

CN 0.6 x 1O-s 
FI 
CNHS 
FIHS 

CN 0.1 x IO-8 
FI 
CNHS 
FIHS 

8.1 x IO-8 1.4 x 10-S 8.1 x 10-S 1.4 x 10-a 
8.1 x 1O-s 1.4 x 10-8 8.1 x lo-% 1.4 x 10-s 
9.1 x 10-8 1.1 x 10-a 8.5 x 10-l 9.5 x 10-s 
2.5 x 1O-2 5.7 x 10-s 2.4 x 10-l 5.1 x 10-e 

7.9 x 10-l 1.3 x IO-’ 7.9 x 10-l 1.3 x 10-l 
7.9 x 10-l 1.3 x 10-l 7.9 x 10-l 1.3 x IO-’ 
7.7 x 10-I 1.3 x 10-l 6.0 x 10-l 9.7 x 10-a 
7.6 x 10-l 1.3 x 10-l 5.2 x IO-’ 1.1 x 10-l 

9.3 x 10-l 3.4 x 10-l 9.3 x 10-l 3.4 x 10-l 
9.3 x 10-l 3.4 x 10-l 9.3 x 10-l 3.4 x 10-l 
9.2 x 10-l 3.4 x IO-’ 8.9 x 10-l 3.3 x 10-l 

9.2 x 10-l 3.4 x 10-I 8.6 x 10-l 3.3 x 10-l 

(i Steady-state errors in the solution to problem 1 as a function of boundary layer thickness Y 
and time step At. 
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TABLE IP 

Time 
stepping 

Spectral model Finite-difference model 
(fir = 2.0 x 10-3) (At = 2.0 x 10-y 

Maximum pointwise rms Maximum pointwise rms 
Y error error error error 

CN 0.6 x 10-a < 10-s < 10-e < IO-6 < 10-a 
FI < 10-B < 10-B < 10-e < 10-g 
CNHS < 10-a < 10-e < 10-e < 10-a 
FIHS < 10-s < 10-e i 10-S < 10-0 

CN 0.1 x 10-a unbounded 1.6 x IO-’ 3.5 x 10-a 
FI < 10-e < 10-B 1.2 x 10-4 6.6 x 10-S 
CNHS < 10-e < 10-B 3.1 x 10-4 9.0 x IO-6 
FIHS < 10-B < 10-B 1.5 x 10-4 8.8 x lo-6 

CN 
FI 
CNHS 
FIHS 

0.01 x 10-a unbounded 4.5 x 10-t 1.5 x IO-’ 
< 10-a < 10-o 4.3 x 10-l 1.5 x 10-i 

1.8 x lO-6 < 10-s 4.5 x 10-l 1.5 x 10-t 
< IO-6 < 10-s 4.3 x 10-l 1.6 x 10-l 

CN 0.001 x 10-a unbounded 9.2 x 10-l 2.0 x 10-t 
FI < 10-e < 10-B 9.2 x 10-i 2.6 x IO-’ 
CNHS 8.5 x 1O-B 2.9 x IO-6 9.2 x IO-’ 2.0 x IO-’ 
FIHS < 10-S < 10-e 9.2 x 10-l 2.6 x 10-l 

o Steady-state errors in the solution to problem 2 as a function of boundary layer thickness Y 
for the spectral and finite-difference models. 

In general both the accuracy and range of stability of the spectral and finite- 
difference models are increased when derivative boundary conditions are specified on 
the outflow boundary (P2, Table II). The only exception occurs for the spectral model 
with CN differencing. This combination is still unstable for v < 1.0 x 1O-4 whereas 
highly accurate solutions are obtained with the remaining differencing schemes for 
v as small as 1O-s. As in PI, the finite-difference model can be quite inaccurate, despite 
the fact that the steady-state solution has no explicit boundary layer character. 

4. COMPUTATIONAL STABILITY OF THE CHEBYSHEV METHOD 

It is possible to explain the observed stability properties of the spectral computations 
by appealing to the following straightforward stability analysis. Let 
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un+l rzz Au” , 

9#lj = (- &) filj = &j&j , u(0) = 1, 

u(0) = 1, 

U(1) = 0 (Pl), 
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(9) 

(104 

(10’3 
%m = 0 W), 

and 

u(0) = 1, 

U(1) = 0 (Pl), uw 

where A is the amplification factor for the given time and space differencing scheme 
and the J&, A,, and 6, (i = 1, 3;j = 1, N) denote the specified linear operators and 
their associated eigenvalues and eigenvectors, under the assumed set of boundary 
conditions. There are, of course, N such eigenvalue/eigenvector pairs for each discrete 
operator. 

Of interest to us here is that, for a fixed value of v, the complex eigenvalues of 
operator ,rC; can have positive real parts only for N less than some critical value, say 
N, . That is, there exists a value of N (= NJ which separates a region of N > N, for 
which all real (A,) are negative, from another in which N < N, and at least one real 

TABLE ZIP 

Y N, (UN,‘)-’ 

0.5 x 10-a 15 0.88 
1.25 x 1O-s 35 0.65 
0.5 x 10-a 61 0.54 
0.3 x 10-a 81 0.51 
0.2 x 10-a 101 0.49 

D Corresponding values of the boundary layer 
thickness Y and critical resolution parameter 
N, for problem 1. 

(A,) is positive. Tables III and IV tabulate the associated values of v and N, for 
boundary conditions (2a) and (2b), respectively; note the quasi-constant nature of 
the product (vNc8)-l. 

The implication of the critical resolution parameter N, for the stability of the 
Chebyshev method can be seen by considering the Crank-Nicolson scheme (5). 
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Under the above definitions of Ai and hij, it is easily shown that the complex amplifi- 
cation factor for the jth eigenvector, uSj , satisfies 

(1 + p3Y + %2 
1 A I2 = (1 - &)2 + a22 ’ 

where 

A& _ 
2 - p3 + iu, . 

It is quite clear that stability of this discrete formulation-that is, 1 A I2 < 1 -requires 
Re(Ath,,/2) = p3 < 0 (all j). In other words, a minimum resolution, given by N, , is 
required to maintain stable calculations when using the CN Chebyshev integration 
scheme. The results of the numerical tests verify this effect (Table Ia); for N = 64, 
stable integrations can be made for v = 6.0 x 10-4, but not for v = 1.0 x 10-4. 
The critical nondimensional parameter is the grid Reynolds number (vN,~)-~ which 
in the case of PI (P2) must be less than about 0.5 (1.3) for stability. 

TABLE IV= 

1.25 x 10-S 21 1.82 
0.5 x 10-a 37 1.47 
0.3 x 10-L 49 1.39 
0.2 x 10-s 61 1.35 
0.1 x 10-s 89 1.27 

D Corresponding values of the boundary layer 
thickness P and critical resolution parameter No for 
problem 2. 

Formally, it can be shown that the N-term Chebyshev approximation to the advec- 
tive-diffusive problem (1) and (2a) is convergent and weakly stable in that the growth 
rate associated with this approximation is bounded [8]. For practical purposes, 
however, the growth rate, which is of 0(1/u) for the problem addressed here, is 
sufficiently large as to make useful calculations impossible. 

Similar arguments show that the less accurate fully implicit scheme can be made 
stable for N < N, . Under definitions (IO), the associated amplification factor becomes 

I A I2 = [Cl - fd2 + u32l-1, W) 

where A& = p3 + iu, . For stability, 

(1 - #cd2 + 03” > 1. 
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Once again, p3 < 0 ensures stability; however, for 0 < p3 < 1, the PI scheme can 
also be made stable if 

or equivalently, 

(all j). 

Given a sufficiently large time step, there exists a range of positive p3 for which this 
computational problem is stable. Note that condition (13) must be satisfied for all N 
eigenvalues corresponding to the discrete spectrum of operator 5$ . Therefore, the 
FI scheme can be stabilized but perhaps only by increasing At and, hence, making it 
less accurate. 

By using the multistep time-differencing schemes one might hope to avoid or relax 
the grid Reynolds number restriction. In theory, this should be possible because the 
discrete operator LYr = --/ax is well behaved if boundary conditions are specified 
at inflow (X = 0) only. Consequently, each of the half-steps making up the FIHS and 
CNHS schemes are individually stable, and, by the rule of thumb for the stability of 
fractional step schemes, this should guarantee the stability of the overall multistep 
method. Unfortunately, this need not be the case. For instance, the CNHS integration 
of PI is computationally unstable for v = 1.0 x 1O-4 (Table Ia). 

The origin of this temporal instability which develops for N < N, (even with frac- 
tional step differencing) is the outflow boundary layer at x = 1. For any values of v 
and u > 0, fractional step (8a) is algebraically stable, as is (8b). Nevertheless, Gottlieb 
and Orszag [8] have shown that this does not necessarily guarantee the stability of the 
total step if the discrete forms of the advective and diffusive operators do not commute, 
as in this example. These fractional step schemes may, in some cases, be stabilized 
by using a sufficiently large time step. Nevertheleess, Chebyshev approximation to the 
advective-diffusive equation (1) generally yields multistep methods in which, although 
each fractional step is algebraically stable, the total step is unstable for N less than 
some critical value. 

5. THE EFFECTS OF NONLINEARITY 

We briefly show that analogous computational restrictions apply to the integration 
of nonlinear transport equations by the Chebyshev collocation method. Consider 
the nonlinear version of problem 1, that is, 

with 

u(0, t) = 1, u(1, t) = 0, Problem 3 (P3). (15) 
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The nonlinear steady-state solution 

4x, t> xY&? 
tanh[(l - x)/2 - ~1 

tanh[l/2 - ~1 (16) 

once again exhibits a narrow viscous boundary layer at the downstream end. 
To solve Burgers equation (14) subject to the inhomogeneous boundary conditions 

(15), it is convenient to define the following two modified Crank-Nicolson time- 
differencing schemes: 

(i) Nonlinear Crank-Nicolson (NCN) 

and 

(ii) Nonlinear Crank-Nicolson, half-step (NCNHS), 

u* - un 
At = --+[au,]* - ~[tiu,]” + (I4 - 22)” t&n, u*(o) = 1, 

““+;y u* = ?&d,,]“fl + ~[vuo~l*, u”fl(0) = 1, 
#*+1(l) = 0, 

where the reference field 

d(x) = 1 - x. 

(17) 

(19) 

As is clear from (17) and (18), the intent of the NCN and NCNHS methods is to 
split off and treat implicitly a known part of the advective term-i.e., &,--which 
may be thought of as that part arising due to nonzero values of u at the boundaries 
of the computational domain. In so doing, we greatly relax the Courant limitation on 
the maximally allowable time step, which for these schemes is dictated by the effective 
signal speed in the vicinity of the highly resolved regions near x = 0 and 1. While 
the specific form adopted for O(x) is somewhat arbitrary, the reference velocity 
given by (19) is particularly advantageous because the operator (1 - x)(8/8x) can be 
compactly expressed in the space of Chebyshev polynomials [l]. The NCN and 
NCNHS time-stepping schemes can therefore be implemented quite efficiently. 

Using these modified Crank-Nicolson schemes, we have sought stable solutions to 
Burgers equation for several values of v. That part of the advective term treated 
explicitly has been calculated using the transform method [9]; the resulting nonlinear 
products are therefore alias-free. In all integrations, the time step has been chosen on 
the basis of the Courant condition, the known collocation grid spacing, and the 
effective (explicitly treated) velocity distribution (u - d). The results of these calcula- 
tions are shown in Table V. 

As expected, for well-resolved downstream boundary layers (v = 30.0 x 10v3) 
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accurate results are obtained throughout the computational domain. For marginally 
resolved layers (V = 0.6 x 1O-3), solutions proved to be stable, but nonsteady. The 
relative accuracy of the NCN and NCNHS schemes therefore cannot be determined 
for this range of v. As in the case of the linearized advective equation, the spectral 
calculations are invariably unstable for sufficiently narrow downstream boundary 
layers. Also consistent with the linearized results is the fact that single- and multistep 

TABLE V 

Time Maximum positive ml.5 
stepping Y At error error 

NCN 30.0 x 10-a 2.0 x 10-s <10-e <10-e 

NCNHS 1.7 x 10-s 5.4 x 10-S 
NCN 0.6 x lo-’ 2.0 x 10-4 4.6 x IO-’ 2.5 x lo-‘* 
NCNHS 4.4 x 10-l 2.4 x lo-‘* 
NCN 0.1 x 10-s 1.0 x 10-k unbounded 
NCNHS unbounded 

~1 Steady-state errors in the solution to the nonlinear Problem 3 as a function of boundary layer 
thickness Y for the spectral model. An asterisk (*) denotes a stable, but nonsteady, solution; for these 
cases, the errors have been measured relative to the computed solution at t = 5. 

semi-implicit time-differencing schemes appear to be equally subject to this instability. 
The grid Reynolds number at which instability occurs is approximately the same as that 
noted above for Eq. (1). Related calculations not reported here indicate that explicit 
treatment of the advective effects-corresponding to the choice a(x) = O-leads to 
minimal stabilization of the spectral calculations while necessitating a very small 
time step. 

6. CONCLUSION 

For viscous transport problems, the presence of narrow downstream boundary 
layers arising from the imposed boundary conditions will not in general contaminate 
the interior solution as long as the boundary layer itself is well resolved. As our 
examples demonstrate, poor resolution of these outflow layers will result in inaccurate 
interior solutions for a wide range of spatial and temporal differencing schemes. More 
importantly, the Chebyshev collocation method we have examined is always unstable 
for suthciently thin viscous layers. Neither the effects of nonlinearity nor the use of 
fractional step time-differencing methods removes this instability. 

Inaccuracies in the interior solution due to poor outflow boundary layer resolution 
can be minimized in several ways. First, the physical problem can be locally modified 
to thicken the downstream boundary layer, perhaps by using a spatially dependent 
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diffusive parameter, v = v(x). Second, the discrete (numerical) problem can be opti- 
mized: (1) by specifying derivative rather than homogeneous boundary conditions on 
outflow, or (2) by adopting fully implicit or fractional step time-differencing methods. 
In this latter regard, it is interesting to note that the least accurate time-differencing 
schemes (in the formal sense) can yield the most accurate results for poorly resolved 
outllow boundary layers and that stability of these schemes may sometimes require 
a larger, rather than a smaller, time step. And although the fractional step methods are 
generally the most stable and accurate for small v, their stability cannot be guaranteed 
(at least for the Chebyshev model) by the stability of their component steps. 
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